
PHYSICAL REVIEW E MAY 1997VOLUME 55, NUMBER 5
Analysis of bifurcation patterns in reaction-diffusion systems:
Effect of external noise on the Brusselator model

Srinivas S. Yerrapragada,* Jayanta K. Bandyopadhyay,† V. K. Jayaraman,‡ and B. D. Kulkarni‡

Chemical Engineering Department, University of Louisville, Louisville, Kentucky 40292
~Received 31 July 1996; revised manuscript received 10 December 1996!

A detailed stochastic analysis of the Brusselator scheme has been performed to bring out the effect of
external noise on the system. The diffusion parameterDx was taken to be fluctuated by external noise and a
complete solution diagram with the composition variablesX andY has been generated. These noise-induced
transitions reveal that this system attains a stable state not described by its deterministic analysis. The stochas-
tic analyses also reveal that the structural stability of such systems is disturbed even for a slight external
perturbation in the bifurcation parameter, and in a certain range of noise intensity~s! and correlation time~t!
some different spatial and temporal structures arise.@S1063-651X~97!08505-X#

PACS number~s!: 05.45.1b
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INTRODUCTION

One of the most striking and intriguing aspects of natu
phenomena is that complex systems, involving a large n
ber of strongly interacting elements, can form and maint
‘‘patterns of order’’ extending over a macroscopic space a
time scale. Oscillatory as well as multiple steady-state
havior of certain catalytic reactions has been observed
numerous experiments and a number of theoretical inve
gations have been attempted to explain these effects@1#. Sus-
tained oscillations in reaction rate, in the concentration o
reacting component, or in the temperature have been not
in many heterogeneous catalytic systems. It has been e
lished that for the nonisothermal systems it is usually
thermal feedback that causes oscillations, while for the
thermal operations it is generally the autocatalytic variab
Particular attention has been paid in the literature to the
thermal oscillations of hydrogen or carbon monoxide
catalytic wires, gauzes, or supported catalysts. In many s
ations the oscillations have been aperiodic or irregular. V
complex oscillations in the case of isothermal oxidation
carbon monoxide over a single porous catalyst particle h
been reported@2#. It is generally recognized that the physic
processes of heat and mass transfer, coupled with nonli
kinetics may be responsible for the periodic phenomena
has been observed, however, that the majority of the p
posed models predict simple oscillations, or the relaxat
type of oscillations, but no model adequately accounts
multipeak or chaotic oscillations.

Among the few models that explain the aperiodic oscil
tions are the ‘‘pebbly bed’’ model~a metal catalyst finely
disperged on an inactive carrier! @3,4#, and the coverage
dependent activation energy model@5#. The essence of al
these proposed models is the presence of a discrete nu
of oscillators~metal crystallites or surface patches!, which if
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weakly connected can lead to chaotic oscillations due to
synchronization@6#.

It is widely known that the interaction of a reaction an
diffusion in an open system operating far from equilibriu
gives rise to many interesting phenomena such as ord
steady states, spatially homogeneous periodic solutions,
eling waves and fronts, and shock structures. The volum
literature in this field has been growing steadily since
classical paper by Nicolis and Prigogine@7#. The reaction-
diffusion equations coupled with appropriate kinetic expr
sions have been shown to serve as simple models of a n
ber of biological phenomena and may also explain sim
phenomena in many other fields.

A simple model known as the Brusselator@8# shows how
structure can arise as a sequence of instabilities. Evide
under certain circumstances the usual equilibrium state
chemical reaction may be unstable with respect to small p
turbations and a spatially nonuniform steady state app
~symmetry-breaking instability!. For the Brusselator chemi
cal network, a couple of results of the numerical solution
the transient reaction-diffusion equation were reported@9#.
They have calculated multiple stable solutions for particu
values of governing parameters. A slight change of init
conditions for the relevant parabolic equations very of
resulted in widely different steady-state profiles. As a res
it was not possible to determine how many solutions exist
given values of the parameters. Kubicek and Marek@10#
took advantage of the continuous approach that made it
sible to draw a complete bifurcation diagram. Almost
authors considered the initial componentsA andB to some-
how be maintained uniformly so that they can be treated
externally determined parameters. An exception is the w
of Herschkowitz-Kaufman@9#, which indicated that if diffu-
sion ofA is considered, the space structures still may exist
detailed study of this scheme has been made and reporte
all the possible situations@11#. This work was further ex-
tended to show the chaotic behavior of this system thro
period-doubling bifurcation@12#.

It is well known that nonlinear macroscopic systems o
erating far from equilibrium possess points of branching~bi-
furcation points! at which the stability properties of th
steady-state solutions undergo change. At these so-ca

-
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FIG. 1. Bifurcation diagram showing the dependence of the concentration variableX on the diffusion componentDx for L50.1, Dy

50.008,A52, andB54.6.
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transition points the behavior of the macroscopic system
extremely sensitive to perturbations and the mechanisms
ensure the regression or decay of these fluctuations are
erally lacking. It is necessary then to explicitly take accou
of these fluctuations in modeling systems operating un
such conditions, by the use of stochastic methods. The
turbations are inherent in most systems and are referred
the internal or external noise depending on whether the
gin of these perturbations lie within the system or outside
such as the environment. The role of internal noise in mo
fying the behavior of macroscopic systems has been ex
sively investigated using the master equation formalism
by a continuous diffusion process, i.e., the Fokker-Pla
equation@13,14#. It is now agreed that the contribution o
internal noise to the macroscopic evolution equations is g
erally proportional to the inverse of the square-root volu
of the system. This implies that for large-volume globa
stable systems this effect can generally be ignored. Howe
for systems in the neighborhood of instability the inclusi
of noise leads to large deviations and qualitatively differ
results from those obtained for the macroscopic systems.
sides this internal noise, the origin of the perturbations in
system may also lie external to the system. This can oc
is
at
en-
t
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r-
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r
k
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e
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t
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for example, when the system is coupled to a fluctuat
environment. These fluctuations may be represented as n
terms in the evolution equation and are referred to as exte
noise. It may be noticed that these fluctuations occur a
macroscopic level and can be included in the macrosco
description once their statistical properties are known. T
incorporation of external noise in the macroscopic equati
generates the stochastic differential equation, which can
equivalently written as the Fokker-Planck equations.
would be evident, these fluctuations being external have
bearing on properties of systems such as size or volu
These can therefore be important for large-volume globa
stable systems.

The macroscopic equation suitably appended to incl
the contributions from the external noise takes the form

dx

dt
5F~x!1G~x!j~ t ! ~1!

where x is the global macroscopic variable~generally an
n-dimensional vector!, F(x) and G(x) are some
n-dimensional vectorial nonlinear functions of variablex,
and j(t) refers to the stochastic variable with vanishin
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FIG. 2. Steady-state profiles of the concentration variableX for L50.1 andDx50.0006.
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mean value. The functionF(x) characterizes the determinis
tic part of the evolution of the system andG(x) describes the
coupling of the variablex to the external noisej(t). This
coupling is termed additive ifG(x) is constant~independent
of x! and is termed multiplicative ifG(x) is dependent on
x. These two type of couplings have different properti
while the additive noise would not influence the stabil
properties of the macroscopic equation~because eigenvalue
of the Jacobian matrix are not affected!, the multiplicative
noise may bring about changes in the stability properties
the system, sometimes even to a completely new evolu
pattern. The multiplicative noise can enter either as a lin
a quadratic, or an exponential form or as a dichotomic no
In this work only the linear coupling of the multiplicativ
noise is considered.

It is an experimental observation that in most situatio
the magnitudes of external fluctuations are distributed
cording to a curve that is satisfactorily described by the b
shaped curve of the Gaussian or the normal distribution. T
fact can be understood as a consequence of a fundam
theorem of probability theory, known as the central lim
theorem. One can utilize the fact that, in most situatio
fluctuations in external parameters~such as flow rate, tem
perature, and pressure! cannot be attributed to any one pa
ticular cause and are the result of the cumulative effec
numerous environmental or instrumental factors. If these
tors are not too dissimilar and are not strongly correlated,
central limit theorem ensures that a Gaussian distribu
would result in the external fluctuating parameter. It is u
ally assumed thatj(t) represents a Gaussian process w
zero mean and isd correlated@15–17#.

In this paper a detailed stochastic analysis of the Bru
elator scheme for one particular characteristic length
:

f
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,
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s

been done. A complete solution diagram of the diffusi
parameterDx with the composition variablesX andY has
been generated and the diffusion parameter was taken t
fluctuated by external source. The results thus obtained
veal that the structural stability of the deterministic states
get disturbed even for slight external perturbations and
some cases new structures arise.

THE BRUSSELATOR MODEL

The reaction sequence taking place for a typical Bruss
tor under open system conditions can be obtained as

A�
k1

B, ~2a!

B1X�
k2

Y1D, ~2b!

2X1Y�
k3

3X, ~2c!

X�
k4

E. ~2d!

Such reactions as represented by the above scheme ca
visualized as enzymatic~catalyzed by enzymes immobilize
on solid support! that take place inside the ‘‘idealized pores
~pores of uniform radii but different lengths! of a catalyst
pellet. It can be assumed that these idealized pores h
blocked ends and hence act as oscillators under certain
ditions. This model has been mainly chosen for its autoca
lytic properties and limit cycle behavior. The analysis of t
problem is simplified by assuming that the noncatalytic co
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FIG. 3. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise correlation time and varying no
intensity forL50.1, Dx50.0006, and initial profilea.
s

n
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ing
ponentsA and B have very high diffusion coefficients a
compared to the autocatalytic componentsX andY and can
therefore be regarded as constant in the reaction. The
reaction for the above scheme is

A1B→D1E. ~3!

The corresponding balance equations can be written as

dX̄

dt
5k1Ā2~k2B̄1k4!X̄1k3X̄

2Ȳ, ~4!
et

dȲ

dt
5k2B̄X̄2k3X̄

2Ȳ, ~5!

where the overbars over the variables denote that they are
actual prescaled reaction components. Now, by introduc
the scaled variables

t5k4t̄, X5S k3k4D
1/2

X̄, Y5S k3k4D
1/2

Ȳ; ~6!

A5S k12k3k4
3 D 1/2Ā, B5S k2k4D B̄, ~7!



me

5252 55YERRAPRAGADA, BANDYOPADHYAY, JAYARAMAN, AND KULKARNI
FIG. 4. Spatial and temporal profiles of the concentration variableX for a fixed value of noise intensity and varying noise correlation ti
for L50.1, Dx50.0006, and initial profilea.
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we have

f ~X,Y!5A2~B11!X1X2Y, ~8!

g~X,Y!5BX2X2Y. ~9!

Considering now a reaction-diffusion system with on
dimensional diffusion componentsDx andDy , the balance
equations can be represented by the two parabolic pa
differential equations

]X

]t
5
Dx

L2
]2X

]z2
1 f ~X,Y!, ~10!
-

ial

]Y

]t
5
Dy

L2
]2Y

]z2
1g~X,Y!, ~11!

whereL is the characteristic length of the system. The init
condition and the associated boundary conditions of
zero-flux type are given as follows: for the initial condition

t50, X5X0 , Y5Y0 ; ~12a!

for z50,

dX

dz
505

dY

dz
; ~12b!
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FIG. 5. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise correlation time and varying no
intensity forL50.1, Dx50.0006, and initial profileb.
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and forz51,

dX

dz
505

dY

dz
. ~12c!

FORMULATION OF THE STOCHASTIC MODEL

For noise with nonvanishing correlation time, the temp
ral evolution of the system is no longer Markovian. Thus t
well-known tools of the Markov processes cannot be app
and it becomes difficult to obtain exact explicit results. Ho
ever, Horsthemke and Lefever have presented a detailed
-
e
d
-
is-

cussion on the validity of assuming the environment to ha
certain Markovian properties and the importance of such
approximation@15#. It is also assumed that the environme
besides being Markovian is ergodic. Thus the environmen
governed by an Ornstein-Uhlenbeck process and hence
external fluctuations can be characterized by the correla
function

dj

dt
52

1

t
j1

s

At
S dWdt D , ~13!

wherej is the noise term,s is the strength of the noise, an
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FIG. 6. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise intensity and varying noise correlat
time for L50.1, Dx50.0006, and initial profileb.
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t is the correlation time of the noise.W represents the
Wiener process, the derivative of which is essentially
pseudo random variable that is characterized by a Gaus
distribution. The noise termj has a nonvanishing correlatio
time and hence is termed as colored noise. The incorpora
of this correlation timet into the temporal evolution of the
system is accomplished by a perturbation expansion me
@15#. In the present workDx is considered to be the fluctu
ating parameter and is linearly coupled to the external no
in a multiplicative fashion. It should be noted here that t
external noise would also affectDy in some fashion. How-
ever, for the sake of simplicityDx alone is considered to b
fluctuating. This assumption is made with a view that b
a
ian

on

od

e
e

-

cause of the coupled nature of the reaction scheme, the s
tures that emerge due to the fluctuations inDx should reveal
the qualitative behavior of the system in the presence of
ternal disturbances. The effect of these fluctuations takes
form of j/At in the spatial direction and can be incorporat
into the balance equations in a multiplicative fashion as

]X

]t
5A2~B11!X1X2Y1

Dx

L2
]2X

]z2
1

1

L2At
j~ t !

]2X

]z2
,

~14!

]Y

]t
5BX2X2Y1

Dy

L2
]2Y

]z2
. ~15!
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FIG. 7. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise correlation time and varying no
intensity forL50.1, Dx50.0006, and initial profilec.
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Now the stochastic system dynamics will be described
Eqs. ~13!–~15! with the initial and boundary condition
given by Eq.~12!.

NUMERICAL METHODS OF SOLUTION

The two bounded equations@Eqs.~10! and~11!# at steady
state reduce to a set of second-order differential equati
The entire bifurcation diagram, which shows the concen
tion (X) dependence on the diffusion parameter (Dx), was
then constructed by solving these steady-state determin
equations using the general parametric mapping~GPM! tech-
nique @18#. This technique takes advantage of the impli
y

s.
-

tic

t

function theorem and the shooting method as well. For
entire specified operating range of the parameter (Dx), the
GPM routine solves the system of bounded differential eq
tions for the solution diagram~concentration variableX!.
The steady-state spatial profiles of this set of equations
generated using the Newton-Fox shoot method@19#. In the
shooting method, the boundary value problem is transform
into an initial-value problem and the integration of the resu
ing initial-value problem is carried out by a fourth-ord
Runge-Kutta method. A guess is made initially for the valu
of the concentration variables at one end of the space dim
sion and a forward integration is carried out until the bou
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FIG. 8. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise intensity and varying noise correlat
time for L50.1, Dx50.0006, and initial profilec.
or
tia

k
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rib

of
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dy-
ary conditions at the other end are matched. The temp
evolution of both the deterministic and the stochastic par
differential balance equations@Eqs. ~10! and ~11! and Eqs.
~14! and ~15!# along with their boundary conditions@Eq.
~12!# is computed using a finite-difference method@20#. This
algorithm employs an implicit method, called the Cran
Nicholson method, for reasons of numerical stability. The
noise incorporated partial differential equations@Eqs. ~14!
and~15!# are solved simultaneously with the ordinary diffe
ential characteristic noise equation@Eq. ~13!#, where a
pseudo-random-number generator of the Gaussian dist
tion is used to generate the noise termj.
al
l

-
e

u-

RESULTS AND DISCUSSION

Figure 1 shows a bifurcation diagram withDx as a param-
eter and with fixed values ofL, Dy , A, andB. The trivial
solution can be obtained asX5A andY5B/A. The points
a, b, c, d, ande are chosen in the five-steady-state region
the branches 1, 2, 4, 5, and 3, respectively. The corresp
ing value ofDx exhibiting these five steady states is 0.000
From the deterministic analysis the stability of the stea
state profiles has been judged as follows: profilesa, d, and
e are stable and profilesb andc are unstable.

The steady-state profiles for the pointsa, b, c, d, ande
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FIG. 9. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise correlation time and varying no
intensity forL50.1, Dx50.0006, and initial profiled.
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are given in Fig. 2. The profiles indicate how the stea
states emerge in the space dimension for the dimension
concentration variableX. The pointa shown in Fig. 1 indi-
cates the concentrations ofX at the inlet of the characteristi
length ~i.e., at z50!. The other end, i.e.,z51, in Fig. 2
corresponds to the characteristic lengthL50.1. In this study
of the Brusselator scheme, the plots are given only for
concentration variable (X) and the qualitative features ar
described on these figures. For the inlet values of the c
centration variablesX andY, a guess was made at the oth
end (z51) and a forward integration was performed un
the boundary conditions atz50 were matched. Thes
steady-state profiles have been subsequently taken as i
y
ss

e

n-
r

tial

profiles for both deterministic and stochastic analyses.
The effects ofs ~strength of the noise! andt ~noise cor-

relation time! on the spatial as well as time evolution of th
concentration variableX are given in Figs. 3 and 4. Th
initial concentration profilea ~of Fig. 2! is also marked as 1
The temporal evolution of this profile shows that determ
istically ~in the absence of noise! it is a stable steady state
These temporal profiles are drawn at the entry conditi
(z50). The same initial profilea has been subjected to ex
ternal fluctuations for varying noise intensity (s
50.02–0.05) at a fixed noise correlation time (t52). Now,
with the noise incorporated, the spatial profiles in Fig.
reveal that fors50.02 the steady state stabilizes at a profi
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FIG. 10. Spatial and temporal profiles of the concentration variableX for a fixed value of the noise intensity and varying noise correlat
time for L50.1, Dx50.0006, and initial profiled.
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marked 2, fors50.03 stabilizes at a profile marked 3, an
for s50.02,0.05 stabilizes at the profile marked 4, for
fixed value oft52. It clearly shows that the spatial profile
of a go through new transient profiles for noise strengths
s50.02,0.03, and for higher values ofs50.04,0.05 the pro-
files stabilize at the trivial solution~curvee in Fig. 2!.

Figure 4 reveals the results of the effect oft on the initial
profile a. As observed earlier in the effect ofs, the effect of
t also brings about new transient profiles for noise corre
tion times of t53–20, for a fixeds50.02. Fort,5 the
system stabilizes to the profile marked 2, whereas fot
55–20 the system stabilizes to the profiles marked 3 an
f

-

4.

The interesting feature to be observed in this is that un
the effect ofs, which takes the solutiona to a trivial solu-
tion, the effect oft brings in a completely new solution
during the spatial evolution. The temporal evolution ofX
reveals the same effect as that ofs, i.e., periodic oscillations
exist for lower values oft and with the increase int they
become aperiodic as they approach the new steady state
central phase plane plot of the concentration variablesX and
Y at z50.5 for s50.02 andt52 is depicted in Fig. 11.

Figure 5 gives the deterministic as well as the stocha
solutions~effect of s! of the unstable steady-state solutio
b ~see Fig. 2!. The initial profileb has been redrawn here t
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FIG. 11. Phase plane plots of the concentration variablesX andY for the profilesa, b, c, andd with t52 ands50.02 forL50.1,
Dx50.0006, andz50.5.
aly
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facilitate the comparison of the results obtained in the an
ses. The deterministic analysis reveals that this unstable
stabilizes at the steady-state solutiona. With an increase in
s from 0.02 to 0.05, for a constantt52, the effect is the
same as that on solutiona, as shown earlier in Fig. 3. Th
-
ate
temporal evolution of concentration variableX exhibits pe-
riodic oscillations after a time (t510) and becomes sus
tained for low values ofs ~say 0.02!. For higher values ofs
~0.03–0.05! the oscillations become aperiodic and the so
tion reaches the trivial solution~curvee in Fig. 2!. The effect
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of t, for a constant value ofs50.02, on both the spatial an
temporal evolutions is shown in Fig. 6. With increase int
from 3 to 20, a stable solution emerges, which is a co
pletely new solution. The temporal structures for this eff
reveals that the qualitative features are analogous to tha
the effect ofs, as shown in Fig. 5. The central phase pla
plot to this effect, fort52 ands50.02, is similar to that of
the central phase plane plot of profilea.

The deterministic and stochastic features of solutionc
andd are shown in Figs. 7–10. These figures clearly rev
the qualitative features of both spatial and temporal evo
tions. It is seen from these plots that the effects oft ands
are to bring about stable transients and periodic oscillati
with varying amplitude. The central phase plane plot is
picted in Fig. 11. The trivial solution, i.e., branch 3~see Fig.
1!, is asymptotically stable. Further stochastic analyses
em

c

-
t
of
e

l
-

s
-

of

points p and q on branches 1, 3, and 5 of the bifurcatio
diagram~Fig. 1! reveal similar effects oft ands in bringing
about new stable transients.

CONCLUSION

The effect of external noise in the case of the Brussela
model is to bring about noise-induced transitions, i.e.,
system attains a stable steady state not described by th
terministic analysis due to the fluctuations. It has been no
that the increase in the value ofs has the effect of bringing
the final stabilized state closer to the trivial solution.

The noise-induced transitions are also caused due to
changes in correlation time~t!. However, the new solutions
attained by the system do not correspond to any of the
terministic solutions.
em.
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